If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2+8x-15=0
a = 32; b = 8; c = -15;
Δ = b2-4ac
Δ = 82-4·32·(-15)
Δ = 1984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1984}=\sqrt{64*31}=\sqrt{64}*\sqrt{31}=8\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{31}}{2*32}=\frac{-8-8\sqrt{31}}{64} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{31}}{2*32}=\frac{-8+8\sqrt{31}}{64} $
| 2/7n+3=11/14 | | 2x+5=10x+7 | | X=7y=28 | | 2x-12=-28 | | 7x+4=6(x-4) | | 103.02=5.1m | | 9x-27-3x+12=3(x+2) | | n/7.2=30.8 | | K=2x-1x=4 | | x-13.8=28.46 | | –5p2−2p=0 | | -3(2t+10)=30 | | p+1.2=8 | | (y+7)^2-12=0 | | M(x)=3x-5x=2 | | 7(x-3)=5(x-2) | | 12s=37 | | 2t+t/4*3=440 | | 3x-4+6=12 | | 20x^2–130x=–200 | | 6r+3=8r=11 | | 2x4-4x8=0 | | 8=2*2.14*x | | (3x+10)+(5x+16)=180 | | x1.6=0.8 | | (3x+10)(5x+16)=180 | | 8x+9)-(6x-1)= | | (3x-4)+68+26=180 | | (3x-4)+6826=180 | | x=−2x+35−−−−−−−−− | | -56=5a-11 | | 1.44=1/2*1.8h |